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1. Summary

Methods were developed in Ref. [1] for constructing reference metrics (and from them differentiable structures) on three-

dimensional manifolds with topologies specified by suitable triangulations. This note generalizes those methods by expanding the 
class of suitable triangulations, significantly increasing the number of manifolds to which these methods apply. These new results 
show that this expanded class of triangulations is still a small subset of all possible triangulations. This demonstrates that funda-

mental changes to these methods are needed to further expand the collection of manifolds on which differentiable structures can be 
constructed numerically.

2. Fixing the dihedral angles

The method for constructing reference metrics in Ref. [1] begins with the construction of a flat metric in the neighborhood 
of each vertex of a multicube structure, which can be obtained from a triangulation of that manifold. These flat metrics are then 
combined using partition of unity functions to produce a global 𝐶0 metric, and then smoothed to 𝐶1 by a sequence of additional steps 
described in Ref. [1]. These flat metrics are constructed by fixing the dihedral angles of each cube edge. The simple method used 
in Ref. [1] fixes those dihedral angles to be 2𝜋∕𝐾 , where 𝐾 is the number of cube edges that intersect along a particular edge. This 
choice ensures the sum of the dihedral angles around each edge is 2𝜋, the condition needed to avoid a conical singularity there. This 
uniform dihedral angle condition severely limits the class of multicube structures on which it can be applied. This simple condition 
is replaced here with more complicated but less restrictive conditions.

The basic adjustable parameters that determine these flat metrics are the dihedral angles, 𝜓𝐴{𝛼𝛽}, where the index 𝐴 ∈ ⟨1, ..., 𝑁cubes⟩
labels the cubes in the multicube structure and {𝛼𝛽} ∈

⟨
{−𝑥 −𝑦}, {−𝑥 +𝑦}, {−𝑥 −𝑧}, {−𝑥 +𝑧}, {+𝑥 −𝑦}, {+𝑥 +𝑦}, {+𝑥 −𝑧}, {+𝑥 +𝑧}, {−𝑦 −

𝑧}, {−𝑦 + 𝑧}, {+𝑦 − 𝑧}, {+𝑦 + 𝑧}
⟩

labels the edge formed by the intersection of the {𝛼} and {𝛽} ∈
⟨
{−𝑥}, {+𝑥}, {−𝑦}, {+𝑦}, {−𝑧}, {+𝑧}

⟩
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Fig. 1. Figure shows the intersection between the corner of a cubic region and a small sphere centered on one of the vertices of that cube. This sphere is depicted as 
the dashed (blue) curve; the intersection of this cubic region with the sphere is a spherical triangle shown as solid (red) curves; the solid (black) straight lines are the 
edges of the cube. The dihedral angles 𝜓{𝛼𝛽} between the cube faces are also the angles of this spherical triangle. The vertex angles, 𝜃{𝛼}{𝛽𝛾}, are the angles between 
the edges of the cube, and are also the arc lengths of the sides of this spherical triangle. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

faces of that cube. Each cube has 12 edges so there are a total of 12𝑁cubes dihedral angle parameters needed to determine the vertex 
centered flat metrics.

The sum of the dihedral angles, 𝜓𝐴{𝛼𝛽}, from the cubes that intersect along an edge must equal 2𝜋 to avoid a conical singularity 
along that edge. This constraint can be written explicitly:

0 =𝒞𝐴{𝛼𝛽} ≡ 2𝜋 −
∑

𝐴′{𝛼′𝛽′}
𝜓𝐴′{𝛼′𝛽′} , (1)

where the sum is over all the edges that intersect along edge 𝐴{𝛼𝛽}. Many of these 12𝑁cubes constraints are redundant, but for 
simplicity all are enforced in the numerical analysis here.

Another set of important angles are the vertex angles between the edges of the cube, see Fig. 1. The notation 𝜃𝐴{𝛾}{𝛼𝛽} is used 
for these angles, where the 𝐴 index labels the cube, {𝛾} one of the cube faces, and {𝛼𝛽} the edge that intersects {𝛾} at the {𝛼𝛽𝛾}
vertex. These 𝜃𝐴{𝛾}{𝛼𝛽} are the angles between vectors tangent to the {𝛼𝛾} and the {𝛽𝛾} edges. There are three vertex angles 𝜃𝐴{𝛾}{𝛼𝛽}
associated with each vertex, so 24 for each cube and 24𝑁cubes total for the multicube structure. The law of cosines from spherical 
trigonometry gives the relationship between a vertex angle 𝜃𝐴{𝛾}{𝛼𝛽} and the dihedral angles 𝜓𝐴{𝛼𝛽} associated with the cube edges 
that intersect at that vertex:

cos𝜃{𝛾}{𝛼𝛽} =
cos𝜓{𝛼𝛽} − cos𝜓{𝛼𝛾} cos𝜓{𝛽𝛾}

sin𝜓{𝛼𝛾} sin𝜓{𝛽𝛾}
. (2)

The 𝜃𝐴{𝛾}{𝛼𝛽} can therefore be considered functions of the 𝜓𝐴{𝛼𝛽}.

Consider two cube faces, 𝐴{𝛼} and 𝐴′{𝛼′} that are identified in the multicube structure. The intrinsic metrics associated with these 
cube faces can only be continuous across the interface between cubes if the vertex angles 𝜃𝐴{𝛼}{𝛽𝛾} are the same as the corresponding 
angles 𝜃𝐴′{𝛼′}{𝛽′𝛾′} on the identified face. These additional constraints on the dihedral angles 𝜓𝐴{𝛼𝛽} can be written:

0 =𝒞𝐴{𝛼}{𝛽𝛾} ≡ cos𝜃𝐴{𝛼}{𝛽𝛾} − cos𝜃𝐴′{𝛼′}{𝛽′𝛾′} . (3)

Any interface with 𝒞𝐴{𝛼}{𝛽𝛾} ≠ 0 has a metric discontinuity and consequently a curvature singularity at that interface. Half of these 
vertex angle constrains are redundant, but for simplicity all are enforced in the numerical analysis here.

In any multicube structure the 𝑁edges independent constraints in Eq. (1) (where 𝑁edges are the number of independent edges in the 
multicube structure) and the 12𝑁cubes independent constraints in Eq. (3) must be satisfied by the 12𝑁cubes dihedral angle parameters. 
Since there are more constraints than freely specifiable parameters, we expect that many (most) multicube structures will not admit 
solutions to all the constraints. When solutions do exist we expect they are likely to be unique in most cases. In Ref. [1] a relatively 
small collection of multicube structures were found that admit uniform dihedral angle solutions to these constraints. Solutions that 
do not satisfy the uniform dihedral angle condition are found here for a wider class of manifolds.

The vertex angle constraints, Eq. (3), are very nonlinear, and general analytic solutions are not known. More general solutions 
can be found numerically, however, by finding the minima of the combined constraint norm, ||𝒞||, defined by

||𝒞||2 = ∑
𝐴{𝛼𝛽}

𝒞2
𝐴{𝛼𝛽} +

∑
𝐴{𝛾}{𝛼𝛽}

𝒞2
𝐴{𝛾}{𝛼𝛽} , (4)

where the sums are over the 12𝑁cubes edge and the 24𝑁cubes vertex angle constraints defined in Eqs. (1) and (3). This norm is a 
function of the dihedral angles, ||𝒞||2 = ||𝒞(𝜓𝐴{𝛼𝛽})||2 that is bounded below by zero, so a minimum always exists. If min ||𝒞||2 = 0
then all the constraints are satisfied. If min ||𝒞||2 ≠ 0 then the constraints are not satisfied and it is not possible to build a non-singular 
2

𝐶0 metric on that multicube structure in this way.
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Table 1

Multicube Structures Admitting Uniform Dihedral Angles. The manifold names 
used here are those from the Regina catalog. Those names are explained in detail 
in the documentation to the Regina catalog [3] and also in Ref. [1].

Manifold 𝑁cubes 𝐾max Manifold 𝑁cubes 𝐾max

L(5,2) 4 4 SFS[RP2/n2:(2,1)(2,-1)] 24 6

L(8,3) 8 4 SFS[S2:(2,1)(2,1)(2,-1)] 8 4

L(10,3) 12 6 SFS[S2:(2,1)(2,1)(3,-2)] 12 6

L(12,5) 12 6 SFS[S2:(2,1)(2,1)(4,-3)] 16 8

L(16,7) 16 8 SFS[S2:(2,1)(2,1)(5,-4)] 20 10

L(20,9) 20 10 SFS[S2:(2,1)(2,1)(6,-5)] 24 12

L(24,11) 24 12 SFS[S2:(2,1)(2,1)(7,-6)] 28 14

L(28,13) 28 14 SFS[S2:(2,1)(2,1)(8,-7)] 32 16

L(32,15) 32 16 SFS[S2:(2,1)(3,1)(5,-4)] 20 5

T×S1 24 6 SFS[S2:(2,1)(3,2)(3,-1)] 20 5

KB/n2×∼S1 24 6 SFS[S2:(2,1)(4,1)(4,-3)] 24 6

SFS[S2:(3,1)(3,1)(3,-2)] 24 6

The numerical search for a minimum of ||𝒞||2 was started by setting initial guesses for 𝜓𝐴{𝛼𝛽} to their uniform dihedral angle val-

ues: 𝜓𝐴{𝛼𝛽} = 2𝜋∕𝐾𝐴{𝛼𝛽}, where 𝐾𝐴{𝛼𝛽} is the number of cube edges that intersect edge 𝐴{𝛼𝛽}. The numerical search for a minimum 
was carried out using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2, p. 136] in the Python library scipy.optimize. 
Any numerical minimum with ||𝒞|| ≤ 10−12 was considered to be a good numerical solution to all the constraints, while any min-

imum with ||𝒞|| > 10−12 was rejected. Our interest is finding solutions to these constraints that can be used to construct reference 
metrics on these manifolds. Our numerical searches for solutions were concentrated near the uniform dihedral angle state, because 
only relatively undistorted multicube structures are useful to us as computational domains for solving partial differential equations 
numerically.

Constraint-satisfying dihedral angles 𝜓𝐴{𝛼𝛽} were searched for numerically on the 744 multicube structures constructed from the 
triangulations having eight or fewer tetrahedra included in the Regina [3] catalog of compact orientable three-dimensional manifolds. 
Table 1 lists the 23 manifolds from this search that satisfy all the constraints as well as the uniform dihedral angle condition. Table 2

lists 80 additional manifolds that admit non-uniform dihedral angle solutions with ||𝒞|| ≤ 10−12. The manifold names used in these 
tables are those from the Regina [3] catalog. These tables also list the number of multicube regions, 𝑁cubes, and the maximum 
number of edges, 𝐾max = max𝐾𝐴{𝛼𝛽}, that overlap in each multicube structure. Table 2 also includes two parameters, min𝐴{𝛼𝛽𝛾}
and mindet 𝑔−1

𝐴{𝛼𝛽𝛾}, that measure how distorted the constraint-satisfying dihedral angles make each multicube region. The quantity 
𝐴{𝛼𝛽𝛾} is the solid angle subtended by the cube at the 𝐴{𝛼𝛽𝛾} vertex (i.e. the area of the spherical triangle in Fig. 1). This solid angle 
would equal 𝜋2 in an un-distorted cube, so 2

𝜋
min𝐴{𝛼𝛽𝛾} is a good measure of the maximum distortion in a multicube structure. The 

quantity det 𝑔−1
𝐴{𝛼𝛽𝛾} represents the determinant of the inverse 𝐶0 metric constructed in Ref. [1] from the dihedral angles, evaluated 

at the vertex 𝐴{𝛼𝛽𝛾}. This determinant would equal one in an un-distorted cube, so mindet 𝑔−1
𝐴{𝛼𝛽𝛾} is another good measure of the 

maximum distortion in a multicube structure. Multicube structures with 2
𝜋
min𝐴{𝛼𝛽𝛾} < 10−6 or mindet 𝑔−1

𝐴{𝛼𝛽𝛾} < 10−6 were excluded 
from the list in Table 2.

These results show that only a small fraction, (23 + 80)∕744 ≈ 0.138, of the multicube structures constructed from eight or fewer 
triangulations in the Regina [3] catalog allow dihedral angles that satisfy all the constraints. These include only three manifolds 
constructed from eight tetrahedra, and an even smaller fraction is expected for the manifolds based on triangulations with more 
tetrahedra. These results reveal that the methods developed in Ref. [1], including the generalizations presented here, are unfortu-

nately quite limited in their ability to construct reference metrics on all the manifolds based on the triangulations in the Regina [3]

catalog.

3. Discussion

Given a set of constraint-satisfying dihedral angles 𝜓𝐴{𝛼𝛽}, a global 𝐶0 reference metric can be constructed in a straightforward 
way using the methods developed in Ref. [1]. These 𝐶0 reference metrics determine a basic 𝐶1 differentiable structure on those 
manifolds. Smoother differentiable structures are needed, however, to allow global solutions to second-order equations like Einstein’s 
gravitational field equation. Methods for transforming the 𝐶0 reference metrics to 𝐶1 (or smoother via Ricci flow) are also given in 
Ref. [1]. Those methods were used here successfully to construct 𝐶1 reference metrics for the 23 manifolds listed in Table 1 and 
the 17 manifolds displayed in boldface in Table 2. The constraint-satisfying dihedral angles make the remaining 63 non-boldface 
manifolds in Table 2 so distorted that non-singular 𝐶1 metrics could not be constructed in this way. Considerable effort was expended 
in various attempts to find improved methods that could produce non-singular 𝐶1 metrics in those cases, but all those efforts failed. 
Only 23 + 17 of the 744 triangulations from the Regina [3] catalog produced 𝐶1 reference metrics that could be used to solve 
Einstein’s equation on those manifolds. These results demonstrate that the methods developed in Ref. [1], and generalized here, are 
very limited. Expanding the class of manifolds on which useful 𝐶1 reference metrics can be constructed will probably require new 
methods for transforming the triangulations on those manifolds into ones that cover those manifolds more “uniformly” and so admit 
3

less distorted multicube structures.
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Table 2

Multicube Structures Admitting Non-uniform Dihedral Angles With ||𝒞|| ≤ 10−12 . The quantities 2
𝜋
min and mindet 𝑔−1 (defined in the 

text) measure distortion of the multicube structure, with 2
𝜋
min = mindet 𝑔−1 = 1 in an undistorted structure. Bold face entries also 

admit non-singular 𝐶1 metrics.

Manifold 𝑁cubes 𝐾max
2
𝜋
min mindet 𝑔−1 Manifold 𝑁cubes 𝐾max

2
𝜋
min mindet 𝑔−1

L(7,2) 8 5 0.652 0.380 L(50,19) 24 7 0.117 0.026

L(11,3) 12 6 0.424 0.202 L(55,21) 24 6 0.121 0.027

L(13,3) 16 8 0.169 0.036 SFS[S2:(2,1)(2,1)(2,1)] 16 5 0.332 0.495

L(13,5) 12 5 0.598 0.500 SFS[S2:(2,1)(2,1)(2,3)] 20 7 0.228 0.125

L(14,3) 16 8 0.122 0.016 SFS[S2:(2,1)(2,1)(2,5)] 24 9 0.198 0.125

L(15,4) 16 6 0.360 0.112 SFS[S2:(2,1)(2,1)(2,7)] 28 11 0.122 0.073

L(17,4) 20 8 0.188 0.021 SFS[S2:(2,1)(2,1)(3,-1)] 16 5 0.332 0.495

L(17,5) 16 7 0.358 0.198 SFS[S2:(2,1)(2,1)(3,1)] 20 7 0.218 0.216

L(18,5) 16 6 0.348 0.123 SFS[S2:(2,1)(2,1)(3,2)] 20 6 0.173 0.232

L(19,4) 20 8 0.101 0.007 SFS[S2:(2,1)(2,1)(3,4) 24 8 0.122 0.031

L(19,7) 16 7 0.384 0.361 SFS[S2:(2,1)(2,1)(3,5) 24 8 0.088 0.050

L(21,8) 16 6 0.344 0.379 SFS[S2:(2,1)(2,1)(3,7) 28 10 0.075 0.027

L(22,5) 20 8 0.132 0.010 SFS[S2:(2,1)(2,1)(4,-1)] 20 6 0.332 0.247

L(23,5) 20 8 0.104 0.006 SFS[S2:(2,1)(2,1)(4,1)] 24 9 0.095 0.012

L(23,7) 20 9 0.246 0.128 SFS[S2:(2,1)(2,1)(4,3)] 24 7 0.070 0.057

L(24,7) 20 8 0.270 0.093 SFS[S2:(2,1)(2,1)(5,-3)] 20 7 0.143 0.182

L(25,7) 20 6 0.252 0.055 SFS[S2:(2,1)(2,1)(5,-2)] 20 6 0.242 0.197

L(25,9) 20 9 0.268 0.204 SFS[S2:(2,1)(2,1)(5,2)] 24 8 0.055 0.043

L(26,7) 20 7 0.236 0.034 SFS[S2:(2,1)(2,1)(5,3)] 24 7 0.045 0.071

L(27,8) 20 8 0.234 0.075 SFS[S2:(2,1)(2,1)(5,4)] 28 9 0.025 0.005

L(29,8) 20 6 0.216 0.032 SFS[S2:(2,1)(2,1)(7,-5)] 24 9 0.079 0.092

L(29,9) 24 11 0.191 0.091 SFS[S2:(2,1)(2,1)(7,-4)] 24 8 0.138 0.095

L(29,12) 20 7 0.236 0.099 SFS[S2:(2,1)(2,1)(7,-3)] 24 7 0.135 0.012

L(30,7) 24 9 0.121 0.005 SFS[S2:(2,1)(2,1)(7,-2)] 24 8 0.151 0.046

L(30,11) 20 8 0.232 0.179 SFS[S2:(2,1)(2,1)(8,-5)] 24 8 0.112 0.095

L(31,11) 24 11 0.206 0.130 SFS[S2:(2,1)(2,1)(8,-3)] 24 7 0.132 0.035

L(31,12) 20 7 0.214 0.140 SFS[S2:(2,1)(2,1)(9,-7)] 28 11 0.049 0.056

L(33,7) 24 8 0.073 0.002 SFS[S2:(2,1)(2,1)(9,-5)] 28 9 0.065 0.0006

L(33,10) 24 10 0.196 0.063 SFS[S2:(2,1)(2,1)(10,-7)] 28 10 0.067 0.042

L(34,9) 24 9 0.179 0.128 SFS[S2:(2,1)(2,1)(12,-5)] 28 8 0.005 0.00002

L(34,13) 20 6 0.200 0.121 SFS[S2:(2,1)(3,1)(3,-2)] 16 5 0.334 0.500

L(35,11) 28 13 0.156 0.067 SFS[S2:(2,1)(3,1)(3,-1)] 20 6 0.170 0.138

L(36,11) 24 10 0.182 0.058 SFS[S2:(2,1)(3,1)(3,1)] 24 7 0.147 0.069

L(37,10) 24 8 0.155 0.020 SFS[S2:(2,1)(3,1)(3,2)] 24 7 0.104 0.055

L(39,14) 24 10 0.176 0.102 SFS[S2:(2,1)(3,1)(4,-3)] 20 6 0.167 0.250

L(41,12) 24 8 0.149 0.014 SFS[S2:(2,1)(3,1)(4,-1)] 24 7 0.193 0.74

L(42,13) 28 12 0.155 0.044 SFS[S2:(2,1)(3,1)(5,-3)] 24 7 0.164 0.228

L(43,15) 32 15 0.138 0.066 SFS[S2:(2,1)(3,2)(4,-3)] 24 6 0.091 0.022

L(44,13) 24 8 0.122 0.009 SFS[S2:(2,1)(3,2)(4,-1)] 24 7 0.151 0.029

L(48,17) 28 12 0.139 0.061 SFS[S2:(2,1)(3,2)(5,-2)] 24 6 0.067 0.082
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